You need to be verified before viewing the new arrivals. Please contact us freely for the account No. and password.
A light-emitting diode (LED) is a light source that emits light when an electrical current is applied to it. Discovered in the early 20th century, the technology has been greatly developed and continues to advance through research and development. From early indicator lights with low light output--with only one available color--to today's devices that emit visible, ultraviolet or infra red light, with very high brightness.
The technology behind LED is based on semiconductor technology, which is also the basis of modern computers. In the semiconductor diode, electrons are brought from a state of high energy to a state of low energy state and this energy difference is emitted in the form of light, the effect is called electroluminescence. Specific colors are associated with specialized materials, that are constructed to have an energy gap corresponding to light with particular wavelength/color. An LED is usually a small area (less than 1 mm2) light source, often with optics added directly on top of the chip to shape its radiation pattern and assist in reflection.
LEDs have many advantages to traditional light sources, such as: Low energy consumption, longer lifetime, robustness, small size among others. However they still remain relatively expensive, and have some characteristics that differentiate them from traditional light sources, such as need for current- and heat management. These advantages have caused LEDs to be used in many new applications where traditional light sources could not be used, as well as traditional applications where especially the low energy consumption is appreciated. Despite high price and the need for specialized design, LEDs are seeing adoption in more and more areas of lighting.
Practical use
The first commercial LEDs were commonly used as replacements for incandescent indicators, and in seven-segment displays, first in expensive equipment such as laboratory and electronics test equipment, then later in such appliances as TVs, radios, telephones, calculators, and even watches (see list of signal applications). These red LEDs were bright enough only for use as indicators, as the light output was not enough to illuminate an area. Later, other colors became widely available and also appeared in appliances and equipment. As the LED materials technology became more advanced, the light output was increased, while maintaining the efficiency and the reliability to an acceptable level. The invention and development of the high power white light LED led to use for illumination (see list of illumination applications).
Most LEDs were made in the very common 5 mm T1¾ and 3 mm T1 packages, but with increasing power output, it has become increasingly necessary to shed excess heat in order to maintain reliability, so more complex packages have been adapted for efficient heat dissipation. Packages for state-of-the-art high power LEDs bear little resemblance to early LEDs.
Advantages
For more latest news and promotion, please leave your E-mail address.
Your EmailYou need to be verified before viewing the new arrivals. Please contact us freely for the account No. and password.